Tropical Rain Classification and Estimation of Rain from Z-r (reflectivity-rain Rate) Relationships

نویسندگان

  • L. S. Kumar
  • Y. H. Lee
  • J. X. Yeo
  • J. T. Ong
  • Cheng Soon Garden
چکیده

A Z-R relation is derived using a data set which consists of nine rain events selected from Singapore’s drop size distribution. Rain events are separated into convective and stratiform types of rain using two methods: the Gamache-Houze method, a simple threshold technique, and the Atlas-Ulbrich method. In the Atlas-Ulbrich method, the variability of the rain integral parameters R, Z, Nw, D0 and gamma model parameter μ are used for the classification of rain into convective, stratiform and transition. Z-R relations are derived for each type of rain after classification. The changes in the coefficients of the Z-R relations for different rain events are plotted and analyzed. The Z-R relations of the different methods using the Singapore data are compared and analyzed. It is concluded that the coefficient A of the Z-R relation is higher for the convective stage followed by the stratiform and transition stages. The coefficient b values are higher for the transition stage followed by the stratiform and convective stages. Reflectivities are extracted from RADAR data above NTU site for rain events and compared with the reflectivities derived from the distrometer data. Rain rates retrieved from RADAR data using the proposed relations from Singapore’s data set are compared with the distrometer rain rates. The RADAR extracted rain rates are found to be constantly lower than the distrometer derived rain rates but matches well. Received 4 April 2011, Accepted 30 June 2011, Scheduled 11 July 2011 * Corresponding author: Lakshmi Sutha Kumar ([email protected]).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Z-R relationship and a severe rainfall observed by C-band radar in eastern coast of northeastern Brazil

The development and application of techniques that allow to study and to understand the features of precipitations from remote sensing data have been an important object in a number of research. In the radar applications, a basic relation between the reflectivity of the radar and the rain rate must be defined for the region to be studied, that is the conversion of the radar reflectivity in rain...

متن کامل

Dual-Polarization Radar Rainfall Estimation over Tropical Oceans

Dual-polarization radar rainfall estimation relationships have been extensively tested in continental and subtropical coastal rain regimes, with little testing over tropical oceans where the majority of rain on Earth occurs. A 1.5-yr Indo-Pacific warm pool disdrometer dataset was used to quantify the impacts of tropical oceanic drop-size distribution (DSD) variability on dual-polarization radar...

متن کامل

P2b.1 Constrained Gamma Drop Size Model for Polarimetric Radar Rain Estimation: Justification and Development

Accurate rain estimation from radar measurements has been a difficult task due to the variation of raindrop size distribution (DSD), lack of accurate axis ratio model, measurement error, clutter, and so forth. Previously, rain estimation from weather radars has been largely dependent upon empirical relations such as R-Z relations. The development of polarimetric radar makes accurate rain DSD re...

متن کامل

Classification of Precipitation Types Detected in Malaysia

The occurrences of precipitation, also commonly referred as rain, in the form of "convective" and "stratiform" have been identified to exist worldwide. In this study, the radar return echoes or known as reflectivity values acquired from radar scans have been exploited in the process of classifying the type of rain endured. The investigation use radar data from Malaysian Meteorology Department (...

متن کامل

Raindrop size distributions and radar reflectivity–rain rate relationships for radar hydrology*

The conversion of the radar reflectivity factor Z (mm6 m-3) to rain rate R (mm h-1) is a crucial step in the hydrological application of weather radar measurements. It has been common practice for over 50 years now to take for this conversion a simple power law relationship between Z and R. It is the purpose of this paper to explain that the fundamental reason for the existence of such power la...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011